
Parcellation of brain lesions using a precomputed human brain 
connectome improves lesion symptom localization 
William Drew1, Alexander L. Cohen1,2,3,4, Amy Brodtmann5, Maurizio Corbetta6,7, Natalia Egorova-Brumley8,9, Sophia Gozzi10,11, Jordan 
Grafman12,13, Andrew M. Naidech12, Joel L. Voss12, Thomas Yeo14,15,16,17,18,19, Michael D. Fox1,2,20, Shan H. Siddiqi1,2,21

LNM is computationally inefficient, inhibiting the effective use of large 
connectome datasets like the 40,000+ subject UK Biobank.

LNM assumes a brain lesion is homogeneously connected to a single 
functional brain network. However, lesions may span multiple functionally 
distinct brain regions and networks, potentially introducing noise. 

Introduction

We created a precomputed human brain connectome (PHBC) using mean 
whole-brain functional connectivity of 292,019 8mm3 brain voxels across 
1,000 healthy participants. The precomputed functional connectome is a 
high-resolution atlas of voxel-wise functional connectivity.

We developed the precomputed LNM method to compute lesion 
functional connectivity maps efficiently. The precomputed method uses the 
PHBC to calculate a weighted average of the functional connectivity maps 
corresponding to voxels in an ROI. Next, a scaling factor is applied to account 
for differences between individual voxel BOLD signal strengths. 

We developed a method to parcellate brain lesions to reduce the effect of 
heterogenous brain networks. For each lesion, a connectivity matrix of 
voxel-pairwise connectivity is extracted, thresholded to remove weak 
connections, and then clustered using Infomap to group voxels into clusters 
with similar connectivity profiles. 

Methods

We developed the precomputed human brain connectome, a high-resolution atlas of voxel-wise 
functional connectivity. 

The precomputed method enables computationally efficient LNM, even for large connectome 
datasets.

Functionally parcellating lesions improves lesion-symptom localization when using each lesion’s 
largest isolated parcel compared to whole lesions. 

If lesion-symptom localization can be improved even when using a simple size metric to pick the 
optimal parcel, we hypothesize that further improvements in LNM can be achieved by using a more 
specialized parcel selection method that could include selecting multiple relevant lesion parcels to 
consider their interacting network effects. 

Conclusions

Functional connectivity maps of whole lesions generated using both the precomputed and 
conventional LNM methods were similar (spatial r=0.997) and were far more efficiently computed 
(~7X faster) when using a 1,000-subject normative functional connectome. 

In a leave-one-dataset-out cross-validation, lesion network maps derived from the largest parcel of 
each lesion from four datasets predicted depression outcomes in the fifth (r=0.155, p<0.001). This 
was significantly stronger (p=0.0011) than the predictive value of whole lesions.
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Figure 4 – Precomputed LNM Benchmarks

Figure 2 – Precomputed Lesion Network Mapping

Figure 1 – Generating the Precomputed Functional Connectome
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Figure 3 – Functional Lesion Parcellation
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Figure 5 – LOOCV of Depression Lesion Network Mapping using Lesion Parcels
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Functional Lesion Parcellation

Lesion network mapping (LNM) uses brain lesions to link symptoms to 
functional brain networks causally. However, LNM has two main limitations 
when computing lesion functional connectivity maps.

Single Subject
Lesion

(a) For a seed voxel, another voxel in the brain is selected across all subjects in the resting state functional connectivity MRI connectome. (b) The blood 
oxygen level dependent (BOLD) timecourse signal in those subjects at rest at the selected voxels is extracted, Pearson correlated together, and Fisher z-
transformed. This is repeated for every pair of voxels between the brain and the seed voxel to compile the individual Fz-map (c). The individual Fz-map 
contains the functional connectivity from every voxel in the brain to the seed voxel in the individual subject in the connectome. Next, a voxel-wise one-
sample t-test is computed across the individual Fz-maps to compile the T-map (d). Steps (a-d) are repeated for every seed voxel in the brain and compiled 
to form the precomputed functional connectome (e). 

For each individual source voxel in the seed ROI (a), corresponding functional connectivity T-maps are retrieved from the precomputed 
functional connectome (b). The T-maps are weighted by the standard deviation of the source voxel BOLD signal, and then averaged 
together to generate a T-map corresponding to the functional connectivity relative to the whole seed ROI. A scaling factor calculated 
from the standard deviations of the source voxel BOLD signals is applied.(c). 
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For each pair of voxels in a lesion (a) a connectivity matrix is derived from the strength of each voxel-voxel pair’s functional connectivity (b). The connectivity matrix is then thresholded to remove 
weak connections between pairs of voxels and interpreted as a network where each voxel is a node and the strength of the functional connectivity between each pair of voxels is simulated by the 
strength of a spring connecting the two respective nodes of the network (c). Infomap is used to parcellate the network into neighborhoods of voxels with high in-group connectivity (d). These 
neighborhoods of voxels are then converted back into individual parcels indicating functionally homogenous parcels that make up the original lesion (e). Functional connectivity maps are generated 
for each parcel, but only the largest parcel by volume is selected for further analysis (f). 

(a) Lesion connectivity maps computed using the Timecourse lesion network mapping method and the Precomputed lesion network mapping method generated from the same lesion ROI. (b) 
Across a test dataset of stroke lesions (n=135), lesion connectivity maps were computed using both Timecourse and Precomputed lesion network mapping methods. Consistently high spatial 
correlations between each pair of lesion connectivity maps demonstrate that connectivity maps generated using both methods are very similar (mean r = 0.997, s.d. = 0.004). (c) Computation 
time to generate lesion connectivity maps using both lesion network mapping methods for the test lesion dataset was recorded. Compute times confirmed that the Precomputed lesion network 
mapping method is approximately seven times faster than the Timecourse lesion network mapping method when using a connectome of 1,000 subjects. Compute time of the Precomputed lesion 
network mapping method stayed constant with connectome size, while compute time of the Timecourse lesion network mapping method increased linearly. 

(a) Stroke lesions from the five lesion datasets each have distinct functional connectivity profiles (b). These stroke lesions can be parcellated using Infomap into functionally distinct parcels (c) 
that each have distinct functional connectivity profiles (d). Lesion network mapping is performed using each lesion’s largest functional parcel as determined by Infomap. A Leave-One-Dataset-Out 
Cross Validation is performed, using lesion connectivity data from four datasets to explain variance in the fifth dataset. (f) A weighted average of the five “depression network maps” is computed 
to represent the overall depression functional network map. (g) In a leave-one-dataset-out cross-validation, lesion network maps derived from the largest parcel of each lesion from four datasets 
predicted depression outcomes in the fifth (r=0.155, p<0.001). This was significantly stronger (p ≈ 0.0011) than the predictive value of whole lesions. 
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